Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 61 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Empirical Risk Minimization as Parameter Choice Rule for General Linear Regularization Methods (1703.07809v2)

Published 22 Mar 2017 in math.NA, math.ST, and stat.TH

Abstract: We consider the statistical inverse problem to recover $f$ from noisy measurements $Y = Tf + \sigma \xi$ where $\xi$ is Gaussian white noise and $T$ a compact operator between Hilbert spaces. Considering general reconstruction methods of the form $\hat f_\alpha = q_\alpha \left(T*T\right)T*Y$ with an ordered filter $q_\alpha$, we investigate the choice of the regularization parameter $\alpha$ by minimizing an unbiased estimate of the predictive risk $\mathbb E\left[\Vert Tf - T\hat f_\alpha\Vert2\right]$. The corresponding parameter $\alpha_{\mathrm{pred}}$ and its usage are well-known in the literature, but oracle inequalities and optimality results in this general setting are unknown. We prove a (generalized) oracle inequality, which relates the direct risk $\mathbb E\left[\Vert f - \hat f_{\alpha_{\mathrm{pred}}}\Vert2\right]$ with the oracle prediction risk $\inf_{\alpha>0}\mathbb E\left[\Vert Tf - T\hat f_{\alpha}\Vert2\right]$. From this oracle inequality we are then able to conclude that the investigated parameter choice rule is of optimal order. Finally we also present numerical simulations, which support the order optimality of the method and the quality of the parameter choice in finite sample situations.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.