Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bounds on the Poincaré constant for convolution measures (1807.00027v1)

Published 29 Jun 2018 in math.PR, cs.IT, math.FA, and math.IT

Abstract: We establish a Shearer-type inequality for the Poincar\'e constant, showing that the Poincar\'e constant corresponding to the convolution of a collection of measures can be nontrivially controlled by the Poincar\'e constants corresponding to convolutions of subsets of measures. This implies, for example, that the Poincar\'e constant is non-increasing along the central limit theorem. We also establish a dimension-free stability estimate for subadditivity of the Poincar\'e constant on convolutions which uniformly improves an earlier one-dimensional estimate of a similar nature by Johnson (2004). As a byproduct of our arguments, we find that the monotone properties of entropy, Fisher information and the Poincar\'e constant along the CLT find a common root in Shearer's inequality.

Citations (19)

Summary

We haven't generated a summary for this paper yet.