Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Kernelized Complete Conditional Stein Discrepancy (1904.04478v4)

Published 9 Apr 2019 in stat.ML and cs.LG

Abstract: Much of machine learning relies on comparing distributions with discrepancy measures. Stein's method creates discrepancy measures between two distributions that require only the unnormalized density of one and samples from the other. Stein discrepancies can be combined with kernels to define kernelized Stein discrepancies (KSDs). While kernels make Stein discrepancies tractable, they pose several challenges in high dimensions. We introduce kernelized complete conditional Stein discrepancies (KCC-SDs). Complete conditionals turn a multivariate distribution into multiple univariate distributions. We show that KCC-SDs distinguish distributions. To show the efficacy of KCC-SDs in distinguishing distributions, we introduce a goodness-of-fit test using KCC-SDs. We empirically show that KCC-SDs have higher power over baselines and use KCC-SDs to assess sample quality in Markov chain Monte Carlo.

Citations (7)

Summary

We haven't generated a summary for this paper yet.