Papers
Topics
Authors
Recent
Search
2000 character limit reached

Attractors of Cartan foliations

Published 22 Mar 2017 in math.DG | (1703.07597v1)

Abstract: The paper is focused on the existence problem of attractors for foliations. Since the existence of an attractor is a transversal property of the foliation, it is natural to consider foliations admitting transversal geometric structures. As transversal structures are chosen Cartan geometries due to their universality. The existence problem of an attractor on a complete Cartan foliation is reduced to a similar problem for the action of its structure Lie group on a certain smooth manifold. In the case of a complete Cartan foliation with a structure subordinated to a transformation group, the problem is reduced to the level of the global holonomy group of this foliation. Each countable automorphism group preserving a Cartan geometry on a manifold and admitting an attractor is realized as the global holonomy group of some Cartan foliation with an attractor. Conditions on the linear holonomy group of a leaf of a reductive Cartan foliation sufficient for the existence of an attractor (and a global attractor) which is a minimal set are found. Various examples are considered.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.