Uniqueness of twisted linear periods and twisted Shalika periods
Abstract: Let $\rk$ be a local field of characteristic zero. Let $\pi$ be an irreducible admissible smooth representation of $\GL_{2n}(\rk)$. We prove that for all but countably many characters $\chi$ of $\GL_n(\rk)\times \GL_n(\rk)$, the space of $\chi$-equivariant (continuous in the archimedean case) linear functionals on $\pi$ is at most one dimensional. Using this, we prove the uniqueness of twisted Shalika models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.