Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model Predictive Control meets robust Kalman filtering (1703.05219v1)

Published 15 Mar 2017 in math.OC

Abstract: Model Predictive Control (MPC) is the principal control technique used in industrial applications. Although it offers distinguishable qualities that make it ideal for industrial applications, it can be questioned its robustness regarding model uncertainties and external noises. In this paper we propose a robust MPC controller that merges the simplicity in the design of MPC with added robustness. In particular, our control system stems from the idea of adding robustness in the prediction phase of the algorithm through a specific robust Kalman filter recently introduced. Notably, the overall result is an algorithm very similar to classic MPC but that also provides the user with the possibility to tune the robustness of the control. To test the ability of the controller to deal with errors in modeling, we consider a servomechanism system characterized by nonlinear dynamics.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.