Papers
Topics
Authors
Recent
2000 character limit reached

A statistical model for aggregating judgments by incorporating peer predictions (1703.04778v1)

Published 14 Mar 2017 in stat.ML

Abstract: We propose a probabilistic model to aggregate the answers of respondents answering multiple-choice questions. The model does not assume that everyone has access to the same information, and so does not assume that the consensus answer is correct. Instead, it infers the most probable world state, even if only a minority vote for it. Each respondent is modeled as receiving a signal contingent on the actual world state, and as using this signal to both determine their own answer and predict the answers given by others. By incorporating respondent's predictions of others' answers, the model infers latent parameters corresponding to the prior over world states and the probability of different signals being received in all possible world states, including counterfactual ones. Unlike other probabilistic models for aggregation, our model applies to both single and multiple questions, in which case it estimates each respondent's expertise. The model shows good performance, compared to a number of other probabilistic models, on data from seven studies covering different types of expertise.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.