Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

A multi-stage convex relaxation approach to noisy structured low-rank matrix recovery (1703.03898v1)

Published 11 Mar 2017 in math.OC

Abstract: This paper concerns with a noisy structured low-rank matrix recovery problem which can be modeled as a structured rank minimization problem. We reformulate this problem as a mathematical program with a generalized complementarity constraint (MPGCC), and show that its penalty version, yielded by moving the generalized complementarity constraint to the objective, has the same global optimal solution set as the MPGCC does whenever the penalty parameter is over a threshold. Then, by solving the exact penalty problem in an alternating way, we obtain a multi-stage convex relaxation approach. We provide theoretical guarantees for our approach under a mild restricted eigenvalue condition, by quantifying the reduction of the error and approximate rank bounds of the first stage convex relaxation (which is exactly the nuclear norm relaxation) in the subsequent stages and establishing the geometric convergence of the error sequence in a statistical sense. Numerical experiments are conducted for some structured low-rank matrix recovery examples to confirm our theoretical findings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.