Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Learning to represent signals spike by spike (1703.03777v2)

Published 10 Mar 2017 in q-bio.NC

Abstract: A key question in neuroscience is at which level functional meaning emerges from biophysical phenomena. In most vertebrate systems, precise functions are assigned at the level of neural populations, while single-neurons are deemed unreliable and redundant. Here we challenge this view and show that many single-neuron quantities, including voltages, firing thresholds, excitation, inhibition, and spikes, acquire precise functional meaning whenever a network learns to transmit information parsimoniously and precisely to the next layer. Based on the hypothesis that neural circuits generate precise population codes under severe constraints on metabolic costs, we derive synaptic plasticity rules that allow a network to represent its time-varying inputs with maximal accuracy. We provide exact solutions to the learnt optimal states, and we predict the properties of an entire network from its input distribution and the cost of activity. Single-neuron variability and tuning curves as typically observed in cortex emerge over the course of learning, but paradoxically coincide with a precise, non-redundant spike-based population code. Our work suggests that neural circuits operate far more accurately than previously thought, and that no spike is fired in vain.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube