Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Topological defects of 2+1D systems from line excitations in 3+1D bulk (2407.02488v1)

Published 2 Jul 2024 in cond-mat.str-el, hep-th, and quant-ph

Abstract: The bulk-boundary correspondence of topological phases suggests strong connections between the topological features in a d+1-dimensional bulk and the potentially gapless theory on the (d-1)+1-dimensional boundary. In 2+1D topological phases, a direct correspondence can exist between anyonic excitations in the bulk and the topological point defects/primary fields in the boundary 1+1D conformal field theory. In this paper, we study how line excitations in 3+1D topological phases become line defects in the boundary 2+1D theory using the Topological Holography/Symmetry Topological Field Theory framework. We emphasize the importance of "descendent" line excitations and demonstrate in particular the effect of the Majorana chain defect: it leads to a distinct loop condensed gapped boundary state of the 3+1D fermionic Z2 topological order, and leaves signatures in the 2+1D Majorana-cone critical theory that describes the transition between the two types of loop condensed boundaries. Effects of non-invertible line excitations, such as Cheshire strings, are also discussed in bosonic 3+1D topological phases and the corresponding 2+1D critical points.

Citations (2)

Summary

We haven't generated a summary for this paper yet.