Papers
Topics
Authors
Recent
2000 character limit reached

Deep Learning for Automated Quality Assessment of Color Fundus Images in Diabetic Retinopathy Screening (1703.02511v1)

Published 7 Mar 2017 in cs.CV

Abstract: Purpose To develop a computer based method for the automated assessment of image quality in the context of diabetic retinopathy (DR) to guide the photographer. Methods A deep learning framework was trained to grade the images automatically. A large representative set of 7000 color fundus images were used for the experiment which were obtained from the EyePACS that were made available by the California Healthcare Foundation. Three retinal image analysis experts were employed to categorize these images into Accept and Reject classes based on the precise definition of image quality in the context of DR. A deep learning framework was trained using 3428 images. Results A total of 3572 images were used for the evaluation of the proposed method. The method shows an accuracy of 100% to successfully categorise Accept and Reject images. Conclusion Image quality is an essential prerequisite for the grading of DR. In this paper we have proposed a deep learning based automated image quality assessment method in the context of DR. The method can be easily incorporated with the fundus image capturing system and thus can guide the photographer whether a recapture is necessary or not.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.