Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Exploiting Sparsity in the Coefficient Matching Conditions in Sum-of-Squares Programming using ADMM (1703.01969v2)

Published 6 Mar 2017 in math.OC

Abstract: This paper introduces an efficient first-order method based on the alternating direction method of multipliers (ADMM) to solve semidefinite programs (SDPs) arising from sum-of-squares (SOS) programming. We exploit the sparsity of the \emph{coefficient matching conditions} when SOS programs are formulated in the usual monomial basis to reduce the computational cost of the ADMM algorithm. Each iteration of our algorithm requires one projection onto the positive semidefinite cone and the solution of multiple quadratic programs with closed-form solutions free of any matrix inversion. Our techniques are implemented in the open-source MATLAB solver SOSADMM. Numerical experiments on SOS problems arising from unconstrained polynomial minimization and from Lyapunov stability analysis for polynomial systems show speed-ups compared to the interior-point solver SeDuMi, and the first-order solver CDCS.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube