Couplings and quantitative contraction rates for Langevin dynamics (1703.01617v2)
Abstract: We introduce a new probabilistic approach to quantify convergence to equilibrium for (kinetic) Langevin processes. In contrast to previous analytic approaches that focus on the associated kinetic Fokker-Planck equation, our approach is based on a specific combination of reflection and synchronous coupling of two solutions of the Langevin equation. It yields contractions in a particular Wasserstein distance, and it provides rather precise bounds for convergence to equilibrium at the borderline between the overdamped and the underdamped regime. In particular, we are able to recover kinetic behavior in terms of explicit lower bounds for the contraction rate. For example, for a rescaled double-well potential with local minima at distance $a$, we obtain a lower bound for the contraction rate of order $\Omega (a{-1})$ provided the friction coefficient is of order $\Theta (a{-1})$.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.