Proof of an extension of E. Sawyer's conjecture about weighted mixed weak-type estimates (1703.01530v1)
Abstract: We show that if $v\in A_\infty$ and $u\in A_1$, then there is a constant $c$ depending on the $A_1$ constant of $u$ and the $A_{\infty}$ constant of $v$ such that $$\Big|\frac{ T(fv)} {v}\Big|{L{1,\infty}(uv)}\le c\, |f|{L1(uv)},$$ where $T$ can be the Hardy-Littlewood maximal function or any Calder\'on-Zygmund operator. This result was conjectured in [IMRN, (30)2005, 1849--1871] and constitutes the most singular case of some extensions of several problems proposed by E. Sawyer and Muckenhoupt and Wheeden. We also improve and extends several quantitative estimates.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.