Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 32 tok/s Pro
2000 character limit reached

Exact phase diagram and topological phase transitions of the XYZ spin chain (1703.01420v1)

Published 4 Mar 2017 in cond-mat.str-el and cond-mat.supr-con

Abstract: Within the block spin renormalization group we are able to construct the "exact" phase diagram of the XYZ spin chain. First we identify the Ising order along $\hat x$ or $\hat y$ as attractive renormalization group fixed points of the Kitaev chain. Then in a global phase space composed of the anisotropy $\lambda$ of the XY interaction and the coupling $\Delta$ of the $\Delta\sigmaz\sigmaz$ interaction we find that the above fixed points remain attractive in the two dimesional parameter space. We therefore classify the gapped phases of the XYZ spin chain as: (1) either attracted to the Ising limit of the Kitaev-chain which in turn is characterized by winding number $\pm 1$ depending whether the Ising order parameter is along $\hat x$ or $\hat y$ directions; or (2) attracted to the Mott phases of the underlying Jordan-Wigner fermions which is characterized by zero winding number. We therefore establish that the exact phase boundaries of the XYZ model in Baxter's solution indeed correspond to topological phase transitions. The topological nature of the phase transitions of the XYZ model justifies why our analytical solution of the three-site problem which is at the core of the renormalization group treatment is able to produce the exact phase diagram of Baxter's solution. We argue that the distribution of the winding numbers between the three Ising phases is a matter of choice of the coordinate system, and therefore the Mott-Ising phase is entitled to host apprpriate form of zero modes. We further observe that the renormalization group flow can be cast into a geometric progression of a properly identified parameter. We show that this new parameter is actually the size of the (Majorana) zero modes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube