Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

On a Schur-like property for spaces of measures (1703.00677v2)

Published 2 Mar 2017 in math.FA

Abstract: A Banach space has the Schur property when every weakly convergent sequence converges in norm. We prove a Schur-like property for measures: if a sequence of finite signed Borel measures on a Polish space is such that it is bounded in total variation norm and such that for each bounded Lipschitz function the sequence of integrals of this function with respect to these measures converges, then the sequence converges in dual bounded Lipschitz norm or Fortet-Mourier norm to a measure. Moreover, we prove three consequences of this result: the first is equivalence of concepts of equicontinuity in the theory of Markov operators, the second is the derivation of weak sequential completeness of the space of signed Borel measures on Polish spaces from our main result and the third concerns conditions for the coincidence of weak and norm topologies on sets of measures that are bounded in total variation norm with additional properties.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.