Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 160 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

No-pumping theorem for non-Arrhenius rates (1703.00675v3)

Published 2 Mar 2017 in cond-mat.stat-mech

Abstract: The no-pumping theorem refers to a Markov system that holds the detailed balance, but is subject to a time-periodic external field. It states that the time-averaged probability currents nullify in the steady periodic (Floquet) state, provided that the Markov system holds the Arrhenius transition rates. This makes an analogy between features of steady periodic and equilibrium states, because in the latter situation all probability currents vanish explicitly. However, the assumption on the Arrhenius rates is fairly specific, and it need not be met in applications. Here a new mechanism is identified for the no-pumping theorem, which holds for symmetric time-periodic external fields and the so called destination rates. These rates are the ones that lead to the locally equilibrium form of the master equation, where dissipative effects are proportional to the difference between the actual probability and the equilibrium (Gibbsian) one. The mechanism also leads to an approximate no-pumping theorem for the Fokker-Planck rates that relate to the discrete-space Fokker-Planck equation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.