The generalized k-resultant modulus set problem in finite fields
Abstract: Let $\mathbb F_qd$ be the $d$-dimensional vector space over the finite field $\mathbb F_q$ with $q$ elements. Given $k$ sets $E_j\subset \mathbb F_qd$ for $j=1,2,\ldots, k$, the generalized $k$-resultant modulus set, denoted by $\Delta_k(E_1,E_2, \ldots, E_k)$, is defined by $$ \Delta_k(E_1,E_2, \ldots, E_k)=\left{|{\bf x}1+{\bf x}2+\cdots+{\bf x}k|\in \mathbb F_q:{\bf x}j\in E_j,\, j=1,2,\ldots, k\right},$$ where $|{\bf y}|={\bf y}12+ \cdots + {\bf y}_d2$ for ${\bf y}=({\bf y}_1, \ldots, {\bf y}_d)\in \mathbb F_qd.$ We prove that if $\prod\limits{j=1}3 |E_j| \ge C q{3\left(\frac{d+1}{2} -\frac{1}{6d+2}\right)}$ for $d=4,6$ with a sufficiently large constant $C>0$, then $|\Delta_3(E_1,E_2,E_3)|\ge cq$ for some constant $0<c\le 1,$ and if $\prod\limits_{j=1}^4 |E_j| \ge C q^{4\left(\frac{d+1}{2} -\frac{1}{6d+2}\right)}$ for even $d\ge 8,$ then $|\Delta_4(E_1,E_2,E_3, E_4)|\ge cq.$ This generalizes the previous result in \cite{CKP16}. We also show that if $\prod\limits_{j=1}^3 |E_j| \ge C q^{3\left(\frac{d+1}{2} -\frac{1}{9d-18}\right)}$ for even $d\ge 8,$ then $|\Delta_3(E_1,E_2,E_3)|\ge cq.$ This result improves the previous work in \cite{CKP16} by removing $\varepsilon\>0$ from the exponent.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.