Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Exploiting Negative Curvature in Deterministic and Stochastic Optimization (1703.00412v3)

Published 1 Mar 2017 in math.OC

Abstract: This paper addresses the question of whether it can be beneficial for an optimization algorithm to follow directions of negative curvature. Although prior work has established convergence results for algorithms that integrate both descent and negative curvature steps, there has not yet been extensive numerical evidence showing that such methods offer consistent performance improvements. In this paper, we present new frameworks for combining descent and negative curvature directions: alternating two-step approaches and dynamic step approaches. The aspect that distinguishes our approaches from ones previously proposed is that they make algorithmic decisions based on (estimated) upper-bounding models of the objective function. A consequence of this aspect is that our frameworks can, in theory, employ fixed stepsizes, which makes the methods readily translatable from deterministic to stochastic settings. For deterministic problems, we show that instances of our dynamic framework yield gains in performance compared to related methods that only follow descent steps. We also show that gains can be made in a stochastic setting in cases when a standard stochastic-gradient-type method might make slow progress.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.