Papers
Topics
Authors
Recent
2000 character limit reached

Boosted Generative Models

Published 27 Feb 2017 in cs.LG, cs.AI, and stat.ML | (1702.08484v2)

Abstract: We propose a novel approach for using unsupervised boosting to create an ensemble of generative models, where models are trained in sequence to correct earlier mistakes. Our meta-algorithmic framework can leverage any existing base learner that permits likelihood evaluation, including recent deep expressive models. Further, our approach allows the ensemble to include discriminative models trained to distinguish real data from model-generated data. We show theoretical conditions under which incorporating a new model in the ensemble will improve the fit and empirically demonstrate the effectiveness of our black-box boosting algorithms on density estimation, classification, and sample generation on benchmark datasets for a wide range of generative models.

Citations (49)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.