2000 character limit reached
Low-Precision Batch-Normalized Activations (1702.08231v1)
Published 27 Feb 2017 in cs.NE and cs.CV
Abstract: Artificial neural networks can be trained with relatively low-precision floating-point and fixed-point arithmetic, using between one and 16 bits. Previous works have focused on relatively wide-but-shallow, feed-forward networks. We introduce a quantization scheme that is compatible with training very deep neural networks. Quantizing the network activations in the middle of each batch-normalization module can greatly reduce the amount of memory and computational power needed, with little loss in accuracy.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.