Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On flat submaps of maps of non-positive curvature (1702.08205v1)

Published 27 Feb 2017 in math.GR

Abstract: We prove that for every $r>0$ if a non-positively curved $(p,q)$-map $M$ contains no flat submaps of radius $r$, then the area of $M$ does not exceed $Crn$ for some constant $C$. This strengthens a theorem of Ivanov and Schupp. We show that an infinite $(p,q)$-map which tessellates the plane is quasi-isometric to the Euclidean plane if and only if the map contains only finitely many non-flat vertices and faces. We also generalize Ivanov and Schupp's result to a much larger class of maps, namely to maps with angle functions.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.