Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Fully packed loop configurations: polynomiality and nested arches (1702.07604v2)

Published 24 Feb 2017 in math.CO

Abstract: This article proves a conjecture by Zuber about the enumeration of fully packed loops (FPLs). The conjecture states that the number of FPLs whose link pattern consists of two noncrossing matchings which are separated by $m$ nested arches is a polynomial function in $m$ of certain degree and with certain leading coefficient. Contrary to the approach of Caselli, Krattenthaler, Lass and Nadeau (who proved a partial result) we make use of the theory of wheel polynomials developed by Di Francesco, Fonseca and Zinn-Justin. We present a new basis for the vector space of wheel polynomials and a polynomiality theorem in a more general setting. This allows us to finish the proof of Zubers conjecture.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.