Papers
Topics
Authors
Recent
Search
2000 character limit reached

Quivers with relations for symmetrizable Cartan matrices IV: Crystal graphs and semicanonical functions

Published 24 Feb 2017 in math.RT and math.RA | (1702.07570v2)

Abstract: We generalize Lusztig's nilpotent varieties, and Kashiwara and Saito's geometric construction of crystal graphs from the symmetric to the symmetrizable case. We also construct semicanonical functions in the convolution algebras of generalized preprojective algebras. Conjecturally these functions yield semicanonical bases of the enveloping algebras of the positive part of symmetrizable Kac-Moody algebras.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.