Papers
Topics
Authors
Recent
Search
2000 character limit reached

Approximations of Geometrically Ergodic Reversible Markov Chains

Published 24 Feb 2017 in math.PR | (1702.07441v5)

Abstract: A common tool in the practice of Markov Chain Monte Carlo is to use approximating transition kernels to speed up computation when the desired kernel is slow to evaluate or intractable. A limited set of quantitative tools exist to assess the relative accuracy and efficiency of such approximations. We derive a set of tools for such analysis based on the Hilbert space generated by the stationary distribution we intend to sample, $L_2(\pi)$. Our results apply to approximations of reversible chains which are geometrically ergodic, as is typically the case for applications to Markov Chain Monte Carlo. The focus of our work is on determining whether the approximating kernel will preserve the geometric ergodicity of the exact chain, and whether the approximating stationary distribution will be close to the original stationary distribution. For reversible chains, our results extend the results of Johndrow et al. [18] from the uniformly ergodic case to the geometrically ergodic case, under some additional regularity conditions. We then apply our results to a number of approximate MCMC algorithms.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.