Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 62 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Gravity as an SU(1,1) gauge theory in four dimensions (1702.06793v1)

Published 22 Feb 2017 in gr-qc and hep-th

Abstract: We start with the Hamiltonian formulation of the first order action of pure gravity with a full $\mathfrak{sl}(2,\mathbb C)$ internal gauge symmetry. We make a partial gauge-fixing which reduces $\mathfrak{sl}(2,\mathbb C)$ to its sub-algebra $\mathfrak{su}(1,1)$. This case corresponds to a splitting of the space-time ${\cal M}=\Sigma \times \mathbb R$ where $\Sigma$ inherits an arbitrary Lorentzian metric of signature $(-,+,+)$. Then, we find a parametrization of the phase space in terms of an $\mathfrak{su}(1,1)$ commutative connection and its associated conjugate electric field. Following the techniques of Loop Quantum Gravity, we start the quantization of the theory and we consider the kinematical Hilbert space on a given fixed graph $\Gamma$ whose edges are colored with unitary representations of $\mathfrak{su}(1,1)$. We compute the spectrum of area operators acting of the kinematical Hilbert space: we show that space-like areas have discrete spectra, in agreement with usual $\mathfrak{su}(2)$ Loop Quantum Gravity, whereas time-like areas have continuous spectra. We conclude on the possibility to make use of this formulation of gravity to construct a holographic description of black holes in the framework of Loop Quantum Gravity.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.