Papers
Topics
Authors
Recent
2000 character limit reached

Empirical Bayes, SURE and Sparse Normal Mean Models (1702.05195v1)

Published 17 Feb 2017 in stat.ME

Abstract: This paper studies the sparse normal mean models under the empirical Bayes framework. We focus on the mixture priors with an atom at zero and a density component centered at a data driven location determined by maximizing the marginal likelihood or minimizing the Stein Unbiased Risk Estimate. We study the properties of the corresponding posterior median and posterior mean. In particular, the posterior median is a thresholding rule and enjoys the multi-direction shrinkage property that shrinks the observation toward either the origin or the data-driven location. The idea is extended by considering a finite mixture prior, which is flexible to model the cluster structure of the unknown means. We further generalize the results to heteroscedastic normal mean models. Specifically, we propose a semiparametric estimator which can be calculated efficiently by combining the familiar EM algorithm with the Pool-Adjacent-Violators algorithm for isotonic regression. The effectiveness of our methods is demonstrated via extensive numerical studies.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.