Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Bootstrap-based inferential improvements in beta autoregressive moving average model (1702.04391v1)

Published 14 Feb 2017 in stat.CO

Abstract: We consider the issue of performing accurate small sample inference in beta autoregressive moving average model, which is useful for modeling and forecasting continuous variables that assumes values in the interval $(0,1)$. The inferences based on conditional maximum likelihood estimation have good asymptotic properties, but their performances in small samples may be poor. This way, we propose bootstrap bias corrections of the point estimators and different bootstrap strategies for confidence interval improvements. Our Monte Carlo simulations show that finite sample inference based on bootstrap corrections is much more reliable than the usual inferences. We also presented an empirical application.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.