Bootstrap-based inferential improvements in beta autoregressive moving average model (1702.04391v1)
Abstract: We consider the issue of performing accurate small sample inference in beta autoregressive moving average model, which is useful for modeling and forecasting continuous variables that assumes values in the interval $(0,1)$. The inferences based on conditional maximum likelihood estimation have good asymptotic properties, but their performances in small samples may be poor. This way, we propose bootstrap bias corrections of the point estimators and different bootstrap strategies for confidence interval improvements. Our Monte Carlo simulations show that finite sample inference based on bootstrap corrections is much more reliable than the usual inferences. We also presented an empirical application.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.