Papers
Topics
Authors
Recent
2000 character limit reached

Estimating VaR in credit risk: Aggregate vs single loss distribution (1702.04388v1)

Published 14 Feb 2017 in q-fin.CP

Abstract: Using Monte Carlo simulation to calculate the Value at Risk (VaR) as a possible risk measure requires adequate techniques. One of these techniques is the application of a compound distribution for the aggregates in a portfolio. In this paper, we consider the aggregated loss of Gamma distributed severities and estimate the VaR by introducing a new approach to calculate the quantile function of the Gamma distribution at high confidence levels. We then compare the VaR obtained from the aggregation process with the VaR obtained from a single loss distribution where the severities are drawn first from an exponential and then from a truncated exponential distribution. We observe that the truncated exponential distribution as a model for the severities yields results closer to those obtained from the aggregation process. The deviations depend strongly on the number of obligors in the portfolio, but also on the amount of gross loss which truncates the exponential distribution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.