Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 67 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Bipartite charge fluctuations in one-dimensional $\mathbb{Z}_2$ superconductors and insulators (1702.03966v1)

Published 13 Feb 2017 in cond-mat.str-el, cond-mat.mes-hall, and cond-mat.supr-con

Abstract: Bipartite charge fluctuations (BCF) have been introduced to provide an experimental indication of many-body entanglement. They have proved themselves to be a very efficient and useful tool to characterize quantum phase transitions in a variety of quantum models conserving the total number of particles (or magnetization for spin systems). In this Letter, we study the BCF in generic one-dimensional $\mathbb{Z}_2$ (topological) models including the Kitaev superconducting wire model, the Ising chain or various topological insulators such as the SSH model. The considered charge (either the fermionic number or the relative density) is no longer conserved, leading to macroscopic fluctuations of the number of particles. We demonstrate that at phase transitions characterized by a linear dispersion, the BCF probe the change in a winding number that allows one to pinpoint the transition and corresponds to the topological invariant for standard models. Additionally, we prove that a sub-dominant logarithmic contribution is still present at the exact critical point. Its quantized coefficient is universal and characterizes the critical model. Results are extended to the Rashba topological nanowires and to the XYZ model.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.