Papers
Topics
Authors
Recent
2000 character limit reached

Determinantal spanning forests on planar graphs (1702.03802v1)

Published 13 Feb 2017 in math.PR

Abstract: We generalize the uniform spanning tree to construct a family of determinantal measures on essential spanning forests on periodic planar graphs in which every component tree is bi-infinite. Like the uniform spanning tree, these measures arise naturally from the laplacian on the graph. More generally these results hold for the "massive" laplacian determinant which counts rooted spanning forests with weight $M$ per finite component. These measures typically have a form of conformal invariance, unlike the usual rooted spanning tree measure. We show that the spectral curve for these models is always a simple Harnack curve, this fact controls the decay of edge-edge correlations in these models. We compute a limit shape theory in these settings, where the limit shapes are defined by measured foliations of fixed isotopy type.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.