Bifurcation of nonlinear bound states in the periodic Gross-Pitaevskii equation with PT-symmetry
Abstract: The stationary Gross-Pitaevskii equation in one dimension is considered with a complex periodic potential satisfying the conditions of the PT (parity-time reversal) symmetry. Under rather general assumptions on the potentials we prove bifurcations of PT-symmetric nonlinear bound states from the end points of a real interval in the spectrum of the non-selfadjoint linear Schrodinger operator with a complex PT-symmetric periodic potential. The nonlinear bound states are approximated by the effective amplitude equation, which bears the form of the cubic nonlinear Schrodinger equation. In addition we provide sufficient conditions for the appearance of complex spectral bands when the complex $\PT$-symmetric potential has an asymptotically small imaginary part.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.