Papers
Topics
Authors
Recent
Search
2000 character limit reached

The time-dependent expected reward and deviation matrix of a finite QBD process

Published 9 Feb 2017 in math.PR | (1702.02790v1)

Abstract: Deriving the time-dependent expected reward function associated with a continuous-time Markov chain involves the computation of its transient deviation matrix. In this paper we focus on the special case of a finite quasi-birth-and-death (QBD) process, motivated by the desire to compute the expected revenue lost in a MAP/PH/1/C queue. We use two different approaches in this context. The first is based on the solution of a finite system of matrix difference equations; it provides an expression for the blocks of the expected reward vector, the deviation matrix, and the mean first passage time matrix. The second approach, based on some results in the perturbation theory of Markov chains, leads to a recursive method to compute the full deviation matrix of a finite QBD process. We compare the two approaches using some numerical examples.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.