Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Complete Quantitative Deduction System for the Bisimilarity Distance on Markov Chains (1702.02528v5)

Published 8 Feb 2017 in cs.LO

Abstract: In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and Plotkin (LICS 2016) that uses equality relations $t \equiv_\varepsilon s$ indexed by rationals, expressing that `$t$ is approximately equal to $s$ up to an error $\varepsilon$'. Notably, our quantitative deduction system extends in a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by introducing an axiom for dealing with the Kantorovich distance between probability distributions. The axiomatization is then used to propose a metric extension of a Kleene's style representation theorem for finite labelled Markov chains, that was proposed (in a more general coalgebraic fashion) by Silva et al. (Inf. Comput. 2011).

Citations (7)

Summary

We haven't generated a summary for this paper yet.