Papers
Topics
Authors
Recent
Search
2000 character limit reached

Neural Semantic Parsing over Multiple Knowledge-bases

Published 6 Feb 2017 in cs.CL | (1702.01569v2)

Abstract: A fundamental challenge in developing semantic parsers is the paucity of strong supervision in the form of language utterances annotated with logical form. In this paper, we propose to exploit structural regularities in language in different domains, and train semantic parsers over multiple knowledge-bases (KBs), while sharing information across datasets. We find that we can substantially improve parsing accuracy by training a single sequence-to-sequence model over multiple KBs, when providing an encoding of the domain at decoding time. Our model achieves state-of-the-art performance on the Overnight dataset (containing eight domains), improves performance over a single KB baseline from 75.6% to 79.6%, while obtaining a 7x reduction in the number of model parameters.

Citations (57)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.