Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

The Trio Identity for Quasi-Monte Carlo Error (1702.01487v2)

Published 6 Feb 2017 in math.NA

Abstract: Monte Carlo methods approximate integrals by sample averages of integrand values. The error of Monte Carlo methods may be expressed as a trio identity: the product of the variation of the integrand, the discrepancy of the sampling measure, and the confounding. The trio identity has different versions, depending on whether the integrand is deterministic or Bayesian and whether the sampling measure is deterministic or random. Although the variation and the discrepancy are common in the literature, the confounding is relatively unknown and under-appreciated. Theory and examples are used to show how the cubature error may be reduced by employing the low discrepancy sampling that defines quasi-Monte Carlo methods. The error may also be reduced by rewriting the integral in terms of a different integrand. Finally, the confounding explains why the cubature error might decay at a rate different from that of the discrepancy.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.