Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 165 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural Feature Embedding for User Response Prediction in Real-Time Bidding (RTB) (1702.00855v6)

Published 2 Feb 2017 in cs.IR

Abstract: In the area of ad-targeting, predicting user responses is essential for many applications such as Real-Time Bidding (RTB). Many of the features available in this domain are sparse categorical features. This presents a challenge especially when the user responses to be predicted are rare, because each feature will only have very few positive examples. Recently, neural embedding techniques such as word2vec which learn distributed representations of words using occurrence statistics in the corpus have been shown to be effective in many Natural Language Processing tasks. In this paper, we use real-world data set to show that a similar technique can be used to learn distributed representations of features from users' web history, and that such representations can be used to improve the accuracy of commonly used models for predicting rare user responses.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.