Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Power monoids: A bridge between Factorization Theory and Arithmetic Combinatorics (1701.09152v6)

Published 31 Jan 2017 in math.NT, math.AC, math.CO, and math.RA

Abstract: We extend a few fundamental aspects of the classical theory of non-unique factorization, as presented in Geroldinger and Halter-Koch's 2006 monograph on the subject, to a non-commutative and non-cancellative setting, in the same spirit of Baeth and Smertnig's work on the factorization theory of non-commutative, but cancellative monoids [J. Algebra 441 (2015), 475-551]. Then, we bring in power monoids and, applying the abstract machinery developed in the first part, we undertake the study of their arithmetic. More in particular, let $H$ be a multiplicatively written monoid. The set $\mathcal P_{\rm fin}(H)$ of all non-empty finite subsets of $H$ is naturally made into a monoid, which we call the power monoid of $H$ and is non-cancellative unless $H$ is trivial, by endowing it with the operation $(X,Y) \mapsto {xy: (x,y) \in X \times Y}$. Power monoids are, in disguise, one of the primary objects of interest in arithmetic combinatorics, and here for the first time we tackle them from the perspective of factorization theory. Proofs lead to consider various properties of finite subsets of $\mathbf N$ that can or cannot be split into a sumset in a non-trivial way, which gives rise to a rich interplay with additive number theory.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.