Papers
Topics
Authors
Recent
2000 character limit reached

Airy structures and symplectic geometry of topological recursion

Published 31 Jan 2017 in math.AG, hep-th, math-ph, math.MP, math.QA, and math.SG | (1701.09137v2)

Abstract: We propose a new approach to the topological recursion of Eynard-Orantin based on the notion of Airy structure, which we introduce in the paper. We explain why Airy structure is a more fundamental object than the one of the spectral curve. We explain how the concept of quantization of Airy structure leads naturally to the formulas of topological recursion as well as their generalizations. The notion of spectral curve is also considered in a more general framework of Poisson surfaces endowed with foliation. We explain how the deformation theory of spectral curves is related to Airy structures. Few other topics (e.g. the Holomorphic Anomaly Equation) are also discussed from the general point of view of Airy structures.

Citations (53)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.