Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Spatial Projection of Multiple Climate Variables using Hierarchical Multitask Learning (1701.08840v1)

Published 30 Jan 2017 in cs.LG and stat.ML

Abstract: Future projection of climate is typically obtained by combining outputs from multiple Earth System Models (ESMs) for several climate variables such as temperature and precipitation. While IPCC has traditionally used a simple model output average, recent work has illustrated potential advantages of using a multitask learning (MTL) framework for projections of individual climate variables. In this paper we introduce a framework for hierarchical multitask learning (HMTL) with two levels of tasks such that each super-task, i.e., task at the top level, is itself a multitask learning problem over sub-tasks. For climate projections, each super-task focuses on projections of specific climate variables spatially using an MTL formulation. For the proposed HMTL approach, a group lasso regularization is added to couple parameters across the super-tasks, which in the climate context helps exploit relationships among the behavior of different climate variables at a given spatial location. We show that some recent works on MTL based on learning task dependency structures can be viewed as special cases of HMTL. Experiments on synthetic and real climate data show that HMTL produces better results than decoupled MTL methods applied separately on the super-tasks and HMTL significantly outperforms baselines for climate projection.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube