Papers
Topics
Authors
Recent
2000 character limit reached

Laplace's method in Bayesian inverse problems

Published 27 Jan 2017 in math.PR | (1701.07989v2)

Abstract: In a Bayesian inverse problem setting, the solution consists of a posterior measure obtained by combining prior belief, information about the forward operator, and noisy observational data. This measure is most often given in terms of a density with respect to a reference measure in a high-dimensional (or infinite-dimensional) Banach space. Although Monte Carlo sampling methods provide a way of querying the posterior, the necessity of evaluating the forward operator many times (which will often be a costly PDE solver) prohibits this in practice. For this reason, many practitioners choose a suitable Gaussian approximation of the posterior measure, in a procedure called Laplace's method. Once generated, this Gaussian measure is a lot easier to sample from and properties like moments are immediately acquired. This paper derives Laplace's approximation of the posterior measure attributed to the inverse problem explicitly as the posterior measure of a second-order approximation of the data-misfit functional, specifically in the infinite-dimensional setting. By use of a reverse Cauchy-Schwarz inequality we are able to explicitly bound the Hellinger distance between the posterior and its approximation.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.