Calabi-Yau Structures, Spherical Functors, and Shifted Symplectic Structures (1701.07789v2)
Abstract: A categorical formalism is introduced for studying various features of the symplectic geometry of Lefschetz fibrations and the algebraic geometry of Tyurin degenerations. This approach is informed by homological mirror symmetry, derived noncommutative geometry, and the theory of Fukaya categories with coefficients in a perverse Schober. The main technical results include (i) a comparison between the notion of relative Calabi-Yau structures and a certain refinement of the notion of a spherical functor, (ii) a local-to-global gluing principle for constructing Calabi-Yau structures, and (iii) the construction of shifted symplectic structures and Lagrangian structures on certain derived moduli spaces of branes. Potential applications to a theory of derived hyperk\"ahler geometry are sketched.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.