Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 69 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Packing and covering odd cycles in cubic plane graphs with small faces (1701.07748v2)

Published 26 Jan 2017 in math.CO

Abstract: We show that any $3$-connected cubic plane graph on $n$ vertices, with all faces of size at most $6$, can be made bipartite by deleting no more than $\sqrt{(p+3t)n/5}$ edges, where $p$ and $t$ are the numbers of pentagonal and triangular faces, respectively. In particular, any such graph can be made bipartite by deleting at most $\sqrt{12n/5}$ edges. This bound is tight, and we characterise the extremal graphs. We deduce tight lower bounds on the size of a maximum cut and a maximum independent set for this class of graphs. This extends and sharpens the results of Faria, Klein and Stehlik [SIAM J. Discrete Math. 26 (2012) 1458-1469].

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube