Papers
Topics
Authors
Recent
2000 character limit reached

Detecting Hierarchical Ties Using Link-Analysis Ranking at Different Levels of Time Granularity (1701.06861v1)

Published 24 Jan 2017 in cs.SI and physics.soc-ph

Abstract: Social networks contain implicit knowledge that can be used to infer hierarchical relations that are not explicitly present in the available data. Interaction patterns are typically affected by users' social relations. We present an approach to inferring such information that applies a link-analysis ranking algorithm at different levels of time granularity. In addition, a voting scheme is employed for obtaining the hierarchical relations. The approach is evaluated on two datasets: the Enron email data set, where the goal is to infer manager-subordinate relationships, and the Co-author data set, where the goal is to infer PhD advisor-advisee relations. The experimental results indicate that the proposed approach outperforms more traditional approaches to inferring hierarchical relations from social networks.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.