Papers
Topics
Authors
Recent
Search
2000 character limit reached

Nested Markov Properties for Acyclic Directed Mixed Graphs

Published 23 Jan 2017 in stat.ME | (1701.06686v6)

Abstract: Conditional independence models associated with directed acyclic graphs (DAGs) may be characterized in at least three different ways: via a factorization, the global Markov property (given by the d-separation criterion), and the local Markov property. Marginals of DAG models also imply equality constraints that are not conditional independences; the well-known Verma constraint'' is an example. Constraints of this type are used for testing edges, and in a computationally efficient marginalization scheme via variable elimination. We show that equality constraints like theVerma constraint'' can be viewed as conditional independences in kernel objects obtained from joint distributions via a fixing operation that generalizes conditioning and marginalization. We use these constraints to define, via ordered local and global Markov properties, and a factorization, a graphical model associated with acyclic directed mixed graphs (ADMGs). We prove that marginal distributions of DAG models lie in this model, and that a set of these constraints given by Tian provides an alternative definition of the model. Finally, we show that the fixing operation used to define the model leads to a particularly simple characterization of identifiable causal effects in hidden variable causal DAG models.

Citations (130)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.