Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Automatic Analysis, Decomposition and Parallel Optimization of Large Homogeneous Networks (1701.06595v1)

Published 23 Jan 2017 in math.OC and cs.NI

Abstract: The life of the modern world essentially depends on the work of the large artificial homogeneous networks, such as wired and wireless communication systems, networks of roads and pipelines. The support of their effective continuous functioning requires automatic screening and permanent optimization with processing of the huge amount of data by high-performance distributed systems. We propose new meta-algorithm of large homogeneous network analysis, its decomposition into alternative sets of loosely connected subnets, and parallel optimization of the most independent elements. This algorithm is based on a network-specific correlation function, Simulated Annealing technique, and is adapted to work in the computer cluster. On the example of large wireless network, we show that proposed algorithm essentially increases speed of parallel optimization. The elaborated general approach can be used for analysis and optimization of the wide range of networks, including such specific types as artificial neural networks or organized in networks physiological systems of living organisms.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.