Papers
Topics
Authors
Recent
2000 character limit reached

Synthetic associative learning in engineered multicellular consortia (1701.06086v1)

Published 21 Jan 2017 in q-bio.CB

Abstract: Associative learning is one of the key mechanisms displayed by living organisms in order to adapt to their changing environments. It was early recognized to be a general trait of complex multicellular organisms but also found in "simpler" ones. It has also been explored within synthetic biology using molecular circuits that are directly inspired in neural network models of conditioning. These designs involve complex wiring diagrams to be implemented within one single cell and the presence of diverse molecular wires become a challenge that might be very difficult to overcome. Here we present three alternative circuit designs based on two-cell microbial consortia able to properly display associative learning responses to two classes of stimuli and displaying long and short-term memory (i. e. the association can be lost with time). These designs might be a helpful approach for engineering the human gut microbiome or even synthetic organoids, defining a new class of decision-making biological circuits capable of memory and adaptation to changing conditions. The potential implications and extensions are outlined.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.