Papers
Topics
Authors
Recent
2000 character limit reached

Structure-preserving second-order integration of relativistic charged particle trajectories in electromagnetic fields (1701.05605v1)

Published 19 Jan 2017 in physics.plasm-ph

Abstract: Time-centered, hence second-order, methods for integrating the relativistic momentum of charged particles in an electromagnetic field are derived. A new method is found by averaging the momentum before use in the magnetic rotation term, and an implementation is presented that differs from the relativistic Boris Push [1] only in the method for calculating the Lorentz factor. This is shown to have the same second-order accuracy in time as that (Boris Push) [1] found by splitting the electric acceleration and magnetic rotation and that [2] found by averaging the velocity in the magnetic rotation term. All three methods are shown to conserve energy when there is no electric field. The Boris method and the current method are shown to be volume-preserving, while the method of [2] and the current method preserve the $\vec{E} \times \vec{B}$ velocity. Thus, of these second-order relativistic momentum integrations, only the integrator introduced here both preserves volume and gives the correct $\vec{E} \times \vec{B}$ velocity. While all methods have error that is second-order in time, they deviate from each other by terms that increase as the motion becomes relativistic. Numerical results show that [2] develops energy errors near resonant orbits of a test problem that neither volume-preserving integrator does. [1] J. Boris, Relativistic plasma simulation-optimization of a hybrid code, in: Proc. Fourth Conf. Num. Sim. Plasmas, Naval Res. Lab, Wash. DC, 1970, pp. 3-67. [2] J.-L. Vay, Simulation of beams or plasmas crossing at relativistic velocity, Physics of Plasmas (1994-present) 15 (5) (2008) 056701.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.