Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Strong convergence rates of modified truncated EM method for stochastic differential equations (1701.04598v1)

Published 17 Jan 2017 in math.PR

Abstract: Motivated by truncated EM method introduced by Mao (2015), a new explicit numerical method named modified truncated Euler-Maruyama method is developed in this paper. Strong convergence rates of the given numerical scheme to the exact solutions to stochastic differential equations are investigated under given conditions in this paper. Compared with truncated EM method, the given numerical simulation strongly converges to the exact solution at fixed time $T$ and over a time interval $[0,T]$ under weaker sufficient conditions. Meanwhile, the convergence rates are also obtained for both cases. Two examples are provided to support our conclusions.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (2)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube