Discrete-Time Quantum Walks and Graph Structures (1701.04474v4)
Abstract: We formulate three current models of discrete-time quantum walks in a combinatorial way. These walks are shown to be closely related to rotation systems and 1-factorizations of graphs. For two of the models, we compute the traces and total entropies of the average mixing matrices for some cubic graphs. The trace captures how likely a quantum walk is to revisit the state it started with, and the total entropy measures how close the limiting distribution is to uniform. Our numerical results indicate three relations between quantum walks and graph structures: for the first model, rotation systems with higher genera give lower traces and higher entropies, and for the second model, the symmetric 1-factorizations always give the highest trace.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.